

Journal of Molecular Catalysis A: Chemical 126 (1997) 151-159

The role of the metal during NO_2 reduction by C_3H_6 over alumina and silica-supported catalysts

Gratian R. Bamwenda *, Akira Obuchi, Atsushi Ogata, Junko Oi, Satoshi Kushiyama, Koichi Mizuno

National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305, Japan

Received 13 December 1996; revised 28 April 1997; accepted 15 May 1997

Abstract

The role of the metal during the reduction of NO₂ by propylene in oxygen over alumina and silica-supported gold, rhodium and platinum was studied. It was found that three parallel reactions take place, i.e., reduction of NO₂ to N₂ and N₂O, reduction of NO₂ to NO, and oxidation of propylene. It was also found that in the case of rhodium and platinum catalysts, the reaction may proceed entirely on metallic sites and that the alumina and silica supports do not play a critical role in determining the catalytic activity for NO₂ reduction. For gold catalysts, the reaction seems to involve a combination of metal and support catalyzed processes. It was noted that the selectivity toward N₂ formation seems to be primarily influenced by the nature of the metal. © 1997 Elsevier Science B.V.

Keywords: NO2 reduction; Propylene; Rhodium; Platinum; Gold; Alumina; Silica supported catalyst

1. Introduction

The reduction of NO_x to N_2 is a subject of great interest, from both theoretical and practical aspects, as attempts are being made to get more insight into the nature of the active sites and to find catalysts and reaction conditions which would maximize the catalytic activity for the reduction of nitrogen oxides.

In the literature, the role played by different constituents of the catalysts in the reaction mechanism of NO_x reduction is still not clear because it seems to vary depending on the type of the reactant and the catalytic systems used. Another complicating factor is that it seems that

different mechanisms may be operable with different catalysts [1-5].

In an attempt to address the fundamental question concerning the role of the metal in the mechanism of the selective catalytic reduction (SCR) of NO_x , we studied the reduction of NO_2 over alumina and silica-supported gold, rhodium, and platinum catalysts so as to gain insight into the possible role of metals during this process.

2. Experimental

2.1. Catalyst preparation

The gold, rhodium and platinum catalysts were prepared by impregnation of γ -Al₂O₃ (KHS-24 from Sumitomo Chemical, initially

^{*} Corresponding author. Fax: +81-298-588259.

^{1381-1169/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved. *PII* \$1381-1169(97)00106-4

calcined in air at 600°C for 5 h, area 208 g m⁻²) and silica (70–230 mesh, Merck) with aqueous solutions of HAuCl₄ · 4H₂O, RhCl₃ · 3H₂O and H₂PtCl₆ · 6H₂O, so as to yield 3 wt% metal loading. After impregnation, the slurries were freeze dried overnight at 15 Pa, then calcined in flowing air at 500°C for 5 h and finally reduced at 400°C under 1 vol% H₂ for 15 h. The resulting powders were sieved to give a 60–100 mesh fraction.

2.2. Catalyst characterization

The BET surface areas were determined using N_2 physisorption and a Nikkso 4232 analyzer. The dispersion of Pt and Rh were measured after activity tests by adsorption of CO using the pulse adsorption technique and the Ohkura R6015 system. The dispersion of Au particles was not determined due to the lack of an appropriate adsorbate.

Transmission electron micrographs (TEM) of the catalyst samples were obtained with a JOEL JEM-2000EX electron microscope. The metal particle size distributions were obtained from diameter measurements of up to 500 particles per catalyst sample from TEM photographic print enlargements, in a procedure similar to that we have reported previously [6]. The physicochemical properties of alumina supported catalysts are summarized in Table 1.

Table 1	
Physicochemical properties of the catalysts	

Catalyst	Surface area ^a (m^2/g)	Dispersion ^b (%)	d _{metal} ^c (nm)		
γ -Al ₂ O ₃	208				
3% Au/Al ₂ O ₃	177	n.d. ^d	54		
$3\% \text{ Rh}/\text{Al}_2O_3$	172	75	0.9		
$3\% \text{ Pt/Al}_2\text{O}_3$	164	34	1.0		

^aBET surface area.

^b Determined by CO adsorption.

 $^{\circ}$ Mean diameter of metal crystallites, determined from TEM micrographs (magnification: 400 000–2 000 000) by counting 100–500 particles for each sample.

^d Not determined due to the lack of an appropriate adsorbate.

2.3. Catalytic measurements

The catalytic experiments were performed in a continuous flow tubular, quartz reactor (8 mm I.D.) operated at atmospheric pressure. The catalyst (200 mg) was packed into a 7-8 mm long bed between plugs of quartz wool. The feed consisted of the mixtures of ca. 1000 ppm NO_2 , 1000 ppm C_3H_6 , and 5% O_2 , with a He (UHP) balance. The gas flow rates were controlled with mass flow controllers, and the total flow rate was maintained at 160 cm^3/min (STP), corresponding to a space velocity of ca. 27000 h^{-1} . The feed gases was passed downward through the catalyst layer. After activity measurements at a given temperature, by bypassing the catalyst bed a background spectrum was measured to determine initial concentrations of NO, NO + NO₂, N₂O, CO and CO₂. The equilibrium for the reaction $NO_2 = NO + 1/2O_2$ is such that a small amount of NO and O₂ are always present in NO₂ at room temperature $(K_{298K} = 7.23 \times 10^{-7})$ [7]. Thus in the NO₂ feed, NO was initially present as a 0.6-1% impurity. The temperature was monitored by a thermocouple placed below the catalyst bed. The activity data were acquired at steady state, in an ascending temperature sequence followed by a descending temperature sequence. The obtained data had fairly good reproducibility.

2.4. Analysis

Total NO_x (NO + NO₂) in the feed and product streams was analyzed with a chemiluminescent NO_x analyzer (Yanagimoto, ECL-77A). The NO concentration was analyzed with a Horiba CLA-510SS analyzer. In repeated experiments, the product concentrations of nitrogen oxides were reproducible within $\pm 5\%$.

The N₂, O₂ and CO in the effluent was sampled and analyzed by gas chromatography (GC) (Shimadzu, 14A) with a thermal conductivity detector (TCD), using 40 cm³ min⁻¹ He

as a carrier gas and a 2 m molecular sieve 13X column at 70°C. The outlet N₂O was analyzed both with a Horiba VIA-510 analyzer and by GC (Shimadzu GC-14B) equipped with a TCD detector and a 2 m stainless steel column packed with molecular sieves $13 \times$ at 70°C. Carbon dioxide and CO in the products were analyzed with a non-dispersive infrared spectroscopic gas analyzer (Shimadzu, URA 106). The identification of the minor products was performed using a Hewlett Packard HP5970B GC-MS.

The following expressions will be used in the text. The conversion of NO_2 is defined as:

$$X_{\text{NO}_{x}} = \left([\text{NO}_{2}]_{\text{r}} + [\text{NO}]_{\text{r}} - [\text{NO}_{2}]_{\text{p}} - [\text{NO}]_{\text{p}} \right)$$
$$/ [\text{NO}_{2}]_{\text{r}} \times 100$$

Selectivity to $N_2 = [N_2]/([N_2] + [N_2O]) \times 100.$

Amount of carbon in C_3H_6 converted to CO_2 and CO: e.g.,

 $CO_2 = [CO_2]_p \times 100/3 [C_3H_6]_r.$

where $[NO_2]_r$ and $[NO_2]_p$ are reactor inlet and exit NO_x concentrations, respectively, and $[N_2]$ and $[N_2O]$ are the exit N_2 and N_2O concentrations, respectively.

3. Results

3.1. The $NO_2 = NO + 1/2O_2$ reaction in the absence of propylene

Fig. 1a shows the activities of the catalysts for NO₂ decomposition into NO. Nitrogen and N₂O were not detected in the product stream. For Rh and Pt catalysts, the conversion of NO₂ to NO increased with temperature and quickly attained equilibrium conversion levels at ca. 350°C and 400°C, respectively. At temperatures > 400°C, the thermodynamic equilibrium strongly favors the partial decomposition of NO₂ into NO and oxygen. This reaction was slow on Au and γ -Al₂O₃, and the conversions were always some distance from equilibrium. For Au/Al₂O₃, the temperatures required for the onset of NO₂ conversion to NO was > 350°C. Also, pure γ -Al₂O₃ significantly converted NO₂ to NO at temperatures > 400°C. The same results were obtained in repeated experiments with another batches of γ -Al₂O₃ and new reactors.

When the feed was a mixture of NO and O_2 (Fig. 1b), the oxidation of NO to NO₂ over Rh/Al₂O₃ and Pt/Al₂O₃ increased progressively with temperature passing over a maximum of 58 and 45% at ~ 350°C before declining to near equilibrium conversions of 44 and 42% at ca. 400°C, respectively. Only a slight oxidation of NO was observed on Au, peaking at about at 450°C. The γ -Al₂O₃ showed only a marginal activity in NO₂ formation and it was practically independent of temperature in the tested range.

It follows from Fig. 1 that in large excess of oxygen the equilibrium between NO₂ and NO is approached rapidly on Rh/Al_2O_3 and Pt/Al_2O_3 in the temperature range between 350-400°C, but Au/Al_2O_3 moves the reactants to equilibrium at temperatures $> 500^{\circ}$ C. The observed differences in the relative effectiveness of the catalysts for the $NO_2 = NO + 1/2O_2$ and its reverse reaction may possibly be ascribed to kinetic factors e.g., the differences in the dissociative adsorption rates of nitrogen oxides and oxygen, and the differences in the bonding strengths of the species formed on the catalysts surfaces. Finally, the results obtained in Fig. 1 suggest that the $NO_2 = NO + 1/2O_2$ forward and reverse reactions proceed on the same sites.

3.2. The $NO_2 + C_3H_6 + O_2$ reaction on alumina and silica-supported catalysts

The principal products from the NO₂ + C₃H₆ + O₂ reaction on both alumina and silica-supported catalysts were nitrogen, nitrous oxide, nitric oxide, carbon dioxide and carbon monoxide, and water. A variety of minor side-products such as cyanides, oxygenated products such as HCHO, CH₃CHO, C₂H₃CHO, (CH₃)₂C=O,

Fig. 1. Temperature dependence for (a) the NO₂ conversion to NO and (b) oxidation of NO to NO₂. Feed: (a) NO₂ = 1000 ppm, O₂ = 5%; (b) NO = 1000 ppm, O₂ = 5%, balance He. Flow rate, 160 cm³/min; catalyst, 0.2 g. The dashed line is the equilibrium conversion.

and small amounts of cracked products such C_2H_4 and C_2H_6 were also present. A more detailed analysis of the minor products, and the variation of product distribution with temperature will be published elsewhere [8].

The catalytic effects on the selective reduction of NO₂ over alumina (solid lines) and silica (dashed lines)-supported catalysts are summarized in Figs. 2–5. The conversion of NO₂ over Pt and Rh supported on silica and alumina increased with temperature, reached a maximum at 250 and 300°C, respectively, and then declined sharply with increasing reaction tempera-

Fig. 2. Catalytic activities of silica (dashed line, closed symbol) and alumina (solid lines, open symbol)-supported 3 wt% Au, Rh and Pt for reduction of NO₂. Conditions: NO₂ = 970 ppm, C_3H_6 = 1000 ppm, $O_2 = 5\%$, balance He. GHSV = 27000 h⁻¹.

ture. Note that the maximum NO_x conversions are attained at lower temperatures than the temperature of maximum NO oxidation to NO_2 , and the temperature where NO₂ decomposition into NO reaches equilibrium (see Fig. 1). The activity curve of the Au catalyst was markedly different from those of Rh and Pt. The NO₂ conversion increased steadily with temperature reaching conversions up to 52% at 400°C before gradually falling off with temperature [9]. The NO_2 conversion over γ -Al₂O₃ increased steadily with temperature and remained near 100% at temperatures $> 400^{\circ}$ C [10]. It is worth noting that although NO₂ conversion curves of γ -Al₂O₃ and Au/ γ -Al₂O₃ are somewhat similar, γ - Al_2O_3 is far more effective than the Au/Al_2O_3 catalyst in the investigated temperature range. We will come back to this further in the text. In an empty reactor, not shown, there was practically no measurable NO₂ conversion below 500°C.

The selectivity of N₂ and the undesirable N₂O production from NO₂ reduction are presented in Fig. 3. Platinum exhibited a poor selectivity to N₂, giving N₂O as a predominant product. The Au and Rh catalysts showed a good N₂ selectivity, while γ -Al₂O₃ reached N₂ selectivities ca. 90% at temperatures > 350°C. Overall, γ -Al₂O₃ and Au/ γ -Al₂O₃ are more selective towards N₂ with a lower formation of N₂O.

Fig. 3. Selectivity of NO_2 conversion to N_2 and N_2O . Conditions as in Fig. 2.

Fig. 4 depicts the yield of CO and CO_2 from the conversion of C_3H_6 during the reduction of NO₂. It is seen that on Au, Rh and Pt catalysts, at temperatures greater than the optimum temperature, the combustion of C_3H_6 becomes a predominant route. A notable feature here is the simultaneous enhanced evolution of the C_3H_6 oxidation products CO₂ and CO, and the onset of the NO_2 conversion (see Fig. 2). Although γ -Al₂O₃ was able to convert NO₂ to N₂ it gave mainly CO in the process. A careful examination of Figs. 2 and 4 reveals that the low NO_2 conversion over Au/Al_2O_3 in comparison with bare Al_2O_3 can be attributed to the fact that at a substantial amount of propylene is burned over Au/Al_2O_3 before it can selectively reduce NO_x, and this leads to the suppression of its activity.

Fig. 5 shows the conversion of NO_2 to NO from the NO₂ + C₃H₆ + O₂ reaction as a function of temperature. At low temperatures, a high conversion of NO₂ to NO, above equilibrium $NO_2 \rightarrow NO + 1/2O_2$ conversion, was noted on Au, Rh and Pt catalysts. With increase in reaction temperature, the NO composition eventually approached the equilibrium between 350-400°C on alumina-supported catalysts and, at ca. 400°C over silica-supported catalysts. On Au/Al_2O_3 , the NO yield fell below equilibrium concentrations at temperatures greater than the temperature of maximum NO2 conversion (see Fig. 2). Over pure Al_2O_3 , the NO yield was far below equilibrium and it remained more or less constant before declining at temperatures > 350°C. Nearly the same conversions to NO

Fig. 4. Conversion of C3H6 to CO and CO2 as a function of temperature. Conditions as in Fig. 2.

Fig. 5. Conversion of NO_2 to NO during the SCR of NO_2 . Conditions as in Fig. 2.

were obtained in runs in which the reaction temperature was raised to 500°C and lowered again to 200°C.

It is evident from Figs. 2–5 that the temperature-dependent behavior, the percentage conversions of NO₂ reduction to N₂ for alumina- and silica-supported Rh and Pt catalysts are qualitatively quite similar; the most notable differences are that the measurable conversion set in at lower temperatures on alumina-supported catalysts than on silica-supported catalysts, and the disparity in the selectivity toward N₂ formation; Rh catalysts exhibiting higher N₂ yields. Thus, it appears that alumina and silica has little, if any, direct effect on the NO₂ reduction process over these catalysts. Surprisingly, only a minute activity was observed over Au/SiO₂ and none on bare SiO₂ at temperatures up to 500°C.

3.3. The NO + $C_3H_6 + O_2$ reaction

In order to get the full picture on the reduction of nitrogen oxides over these catalysts, we studied the NO + $C_3H_6 + O_2$ reaction under identical reaction conditions, and the results are summarized in Table 2. In the case of Rh and Pt catalysts, the qualitative comparison between the NO + $C_3H_6 + O_2$ and NO₂ + $C_3H_6 + O_2$ systems indicates similar behaviors from the point of view of both products observed and the temperature of maximum activity. For Au/Al_2O_3 and unsupported Al_2O_3 , the conversion levels were lower than when the feed stream was $NO_2 + C_3H_6 + O_2$, but here the conversion levels of NO on Au/Al₂O₃ was significantly higher than that of bare Al_2O_3 . This result partially indicates that over bare alumina and Au/Al_2O_3 , NO₂ plays a certain role in the reduction of NO. The results presented in Fig. 3 and Table 2 also suggest that the selectivity with respect to N₂ seems to be primarily influenced by the nature of the metal used.

Catalyst	T ^a _{max} (°C)	Conversion (%)		Selectivity (%)		Yield of NO ₂ (%)	
		NO	C ₃ H ₆	$\overline{N_2}$	N ₂ O		
γ -Al ₂ O ₃	500	34	69	97	3	5	
$3\% \text{ Au/Al}_2\text{O}_3$	450	41	94	94	6	4	
$3\% Rh/Al_2O_3$	300	44	98	62	38	21	
$3\% \text{ Pt/Al}_{2}O_{2}$	250	49	99	42	58	16	
3% Au/SiO ₂	450	2	10	89	11	6	
$3\% Rh/SiO_2$	300	40	99	54	46	14	
3% Pt/SiO ₂	250	58	99	44	56	5	

Table 2								
Catalytic activities	and	products	from	the	NO +	C ₃ H ₆	$+0_{2}$	reaction

Conditions: NO = 940–970 ppm, $C_3H_6 = 1000$ ppm, $O_2 = 5\%$, balance He. GHSV = 27000 h⁻¹.

^aTemperature of maximum NO conversion.

.....

No measurable activity was detected on bare silica.

4. Discussion

The purpose of this study was to obtain information concerning the catalytic reduction of NO_2 and to investigate the role played by the metal during the SCR process.

From the results presented above, the tested catalysts can be divided into catalysts that are active at low temperatures (Pt/Al_2O_3 and Rh/Al_2O_3) and those active at relatively high temperatures (Al_2O_3 , Au/Al_2O_3).

4.1. Pure Al_2O_3

During the SCR of NO₂, γ -alumina has exhibited a significant activity towards NO₂ reduction to N_2 , and NO_2 partial decomposition into NO. This may be rationalized in the terms of the following considerations: The surface of γ -Al₂O₃ possesses both Lewis acid and basic sites which have been confirmed by strong adsorption of basic and acidic molecules [11]. Propylene can be activated on γ -Al₂O₃ through the interaction with Lewis acid sites and/or by the concerted action of the basic and acidic sites to form allyl complexes [12,13]. The interaction of these adspecies with gas phase or adsorbed NO and NO_2 complexes may lead to the formation of active intermediates which may eventually lead to the formation of the observed products. Recently, Sadykov et al. [14] provided experimental evidence that stable nitrates, as M-NO₃ or M-ONO₂, were adsorbed on γ -Al₂O₃ and suggested that the interaction of these strongly bound nitrogen oxides species with activated hydrocarbons provide the selective reduction route observed on γ -Al₂O₃.

4.2. Pt supported on γ -Al₂O₃ and SiO₂

The remarkable feature of the data from platinum catalysts is the great similarity in the NO_2 conversion results over Pt supported on alumina and on inactive silica. The peak NO_2 conversion and kinetic behavior of Pt/Al₂O₃ are very similar to those of Pt/SiO_2 ; it seems that, on Pt-based catalysts, the SCR reaction may proceed predominantly on active centers of platinum crystallites of the catalysts. In other words, the support component contributes little to the SCR of NO_2 . The high NO yields observed from the SCR of NO₂ at lower temperatures may be ascribed to the fact that, apart from the direct decomposition of NO₂ shown in Fig. 1a, NO is additionally produced from the interaction between adsorbed propylene and NO₂. Nitrogen dioxide has an unpaired electron. It is known that NO_2 radicals can remove hydrogen from saturated hydrocarbons, e.g., during the nitration of CH_4 to form nitromethane via a gas phase $NO_2 + CH_4$ reaction [15,16]. Thus, it seems reasonable to speculate that during NO₂ reduction, NO₂ can abstract an allylic hydrogen from propylene to form NO, OH, propenyl and/or allyl radicals, which may eventually take part directly or indirectly in subsequent NO_2 reduction reactions.

As is evident from Figs. 2 and 4, the NO_2 reduction activity over platinum-based catalysts passed through the maximum as the conversion of C_3H_6 to CO_x increased and approached a 100% level. This demonstrates that part of the C_3H_6 conversion process is initiated by the interaction between NO₂ and C_3H_6 species, as described above. After passing the peak activity, the NO₂ reduction activity falls with increasing reaction temperature. The following explanations can be sought for this behavior. At temperatures higher than optimum temperature, the fall in activity of Pt catalysts is related to the decrease in surface coverage by nitrogen oxides or its complexes, i.e., nitrites and/or nitrates, and a decrease in organic adspecies due to desorption and/or decomposition. These factors decrease the NO₂ reduction rate, as we have observed previously from in situ DRIFT spectroscopy studies [17,18]. Another explanation is the competition for propylene between oxygen (combustion process) and NO_x species. A higher temperature favors the C_3H_6 combustion.

4.3. Rh supported on γ -Al₂O₃ and SiO₂

The trend and performance of Rh/Al₂O₃ were similar to that observed for Rh/SiO_2 . The NO₂ SCR reaction profile for rhodium catalysts was much the same to that observed in the case of alumina and silica supported-platinum catalysts. A notable exception is that Rh catalysts displayed a slightly wide activity window with a temperature of maximum NO₂ reduction ca. 50°C higher than that of Pt catalysts, and they provided a better N₂ selectivity in the whole temperature range examined. Similar activity trends were noted in the NO + $C_3H_6 + O_2$ reaction (not shown). Therefore, the observed catalytic behavior of Rh catalysts can be explained on the similar basis as that discussed above for Pt catalysts.

When considering the commercial application of Rh and Pt catalysts, it would be important to minimize the formation of N_2O which contributes to both stratospheric ozone destruction and greenhouse warming [19,20].

At the temperature of maximum NO₂ conversion, the N_2/N_2O concentration ratio in the exit stream was about 0.3 and 1.6 for Pt and Rh catalysts, respectively. In the NO + $C_3H_6 + O_2$ reaction, the N_2/N_2O ratio was 0.6 and 1.6, for Pt and Rh catalysts, respectively (Table 2). Thus, for Rh catalysts, the selectivity to N_2 was nearly identical for the $NO_2 + C_3H_6 + O_2$ and NO + $C_3H_6 + O_2$ systems, whereas over Pt catalysts it was slightly better in the NO + $C_3H_6 + O_2$ system. The better selectivity to N_2 observed on Rh catalysts can be attributed to the fact that Rh catalysts have a good activity for N₂O decomposition to dinitrogen. When we used the same Pt and Rh catalysts, to investigate the N_2O $(0.1\%) + O_2 (5\%)/He$ reaction, the steady-state rates for N₂O decomposition were 3.6 and 5.7 $\times 10^{3} \ \mu \text{mol}(N_{2}\text{O}) \text{ g}^{-1} \text{ h}^{-1} \text{ for } 3\% \text{ Pt}/\text{Al}_{2}\text{O}_{3}$ and 3% Rh/Al₂O₃ at 300°C, respectively. At 400°C, the N₂O decomposition rates were 20 and $24.4 \times 10^{3} \,\mu \text{mol g}^{-1} \text{ h}^{-1}$ for 3% Pt/Al₂O₃ and 3% Rh/Al₂O₃, respectively. On 3% Rh/Al₂O₃, the temperature of 50% (T_{50}) decomposition of N₂O for the N₂O + O₂ reaction was ca. 400°C [21,22]. Thus, the N₂O decomposition performance of Pt/Al₂O₃ is negligible in comparison to that of Rh/Al₂O₃. Therefore, the observed differences in the N₂/N₂O ratio between Pt and Rh catalysts during the SCR of NO₂ may be interpreted on the basis of the fact that Rh exhibits a significantly higher activity for the decomposition of N₂O to N₂ than Pt catalysts.

Work is underway in our laboratory to develop catalysts for N₂O decomposition after a NO_x reduction stage. Preliminary results show that hydrotalcit derived catalysts, e.g., ZnAlRh-HTlc (0.8 wt% Rh) with a $T_{50} = 350^{\circ}$ C, are prospective candidates for practical application even in the presence of water [22]. With such a catalyst, the overall conversion of NO_x to N₂ can be improved and catalytic efficiencies of industrial relevance can be obtained.

4.4. Au supported on γ -Al₂O₃ and SiO₂

The impregnation of gold on alumina slightly enhanced the activity for oxidation of NO to NO_2 (Fig. 1b), and led to the formation of a relatively large amount of NO during the SCR of NO_2 than that noted over bare alumina (Fig. 5). Over Au/SiO_2 , mainly a non-selective interaction between C₃H₆ and NO₂ leading to the formation of NO and O_2 was noted; only a negligible NO₂ reduction activity to N_2 was observed. The fact that the activity of Au/Al_2O_3 towards NO₂ reduction was lower than that observed over bare Al₂O₃ implies that gold on the alumina masks some of the sites on the alumina and makes them inactive for reduction of NO₂. On the other hand, Au/Al_2O_3 displayed a better activity in the NO + $C_3H_6 + O_2$ reaction. In this case, it appears reasonable to assume that, the reaction may involve a combination of metal and support catalyzed processes, where Au assists Al_2O_3 in the formation of NO_2 , which is then mostly reduced to N_2 and small amounts of N_2O on active sites of Al_2O_3 . It may be added here that, the fact that the SCR of NO₂ proceeds at such reasonable rate in spite of much of the NO₂ being converted to NO suggests that the propagation of the NO_x reduction may take place via an interaction between activated C_3H_6 species and either NO or NO₂.

5. Summary

The Rh and Pt catalysts showed a relatively high NO₂ reduction activity in the 250–300°C temperature range but with a narrow temperature window over which the catalysts are effective. Gold and alumina showed a low activity towards NO₂ decomposition in the absence of propylene, moderate SCR activities at high temperatures with a broad temperature window, and a remarkably high NO₂ conversion selectivity to N₂ as compared with N₂O.

The kinetic behavior and performances of Rh/Al_2O_3 and Pt/Al_2O_3 are very similar to that of Rh/SiO_2 and Pt/SiO_2 indicating that, in the case of Rh and Pt catalysts, the supports Al_2O_3 and SiO_2 , contribute little to the catalytic activity for NO₂ reduction. The important factor appears to be the reaction dynamics between competing reactions, e.g., between the reduction of NO₂ to N₂ and N₂O, NO₂ partial decomposition to NO and, combustion of propylene on the surfaces of rhodium and platinum or their oxides. In the case of gold catalysts, the reaction may involve a combination of metal and support catalyzed processes.

Since the both $NO_2 + C_3H_6 + O_2$ and $NO + C_3H_6 + O_2$ reactions proceed at comparable rates over Rh and Pt, this suggests that the oxidation of NO to NO_2 is not a prerequisite for the SCR reaction to proceed over Pt and Rh metals. Such an initial NO pre-oxidation step seems to be necessary on catalysts like alumina or alumina-supported gold.

Finally, the present results also suggest that the selectivity with respect to N_2 seems to be primarily influenced by the nature of the metal used.

References

- [1] M. Iwamoto, Catal. Today 29 (1996) 29.
- [2] T. Tanaka, T. Okuhara, M. Misono, Appl. Catal. 4 (1994) L1.
- [3] R.H.H. Smits, Y. Iwasawa, Appl. Catal. 6 (1995) L201.
- [4] M. Inaba, Y. Kintaichi, H. Hamada, Catal. Lett. 36 (1996) 223.
- [5] R. Burch, P.J. Millington, A.P. Walker, Appl. Catal. B 4 (1994) 65.
- [6] G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, J. Photochem. Photobiol. A: Chem. 89 (1995) 177.
- [7] J.H. Lunsford, J. Colloid Interface Sci. 26 (1968) 355.
- [8] G.R. Bamwenda, A. Obuchi, A. Ogata, J. Oi, S. Kushiyama, K. Mizuno, to be published.
- [9] A. Ueda, T. Oshima, M. Haruta, in: G. Centi, C. Cristiani, P. Forzatti, S. Perathoner (Eds.), Environmental Catalysis, SCI Pub., Rome, 1995, p. 343.
- [10] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata, Appl. Catal. 70 (1991) L15.
- [11] H. Knozinger, Adv. Catal. Relat. Subj. 25 (1976) 184.
- [12] J. Kubota, T. Ohtani, J.N. Kondo, C. Hirose and K. Domen, Proceed. International Symposium on Surface Nano-Control of Environmental Catalysts and Related Materials, Tokyo, 1996, p. 175.
- [13] V.F. Kiselev, O.V. Krylov (Eds.), Adsorption and Catalysis on Transition Metals and their Oxides. Springer Series in Surface Science 9 (1989) 211.
- [14] V.A. Sadykov, S.L. Baron, V.A. Matyshak, G.M. Alikina, R.V. Bunina, A. Ya Rozovskii, V.V. Lunin, E.V. Lunia, A.N. Kharlanov, A.S. Ivanova, S.A. Veniaminov, Catal. Lett. 37 (1996) 157.
- [15] G.A. Olah, R. Malhotra, C.N. Suhash, Nitration Methods and Mechanisms, VCH, New York, 1989.
- [16] Y. Li, T.L. Slanger, J.N. Armor, J. Catal. 150 (1994) 388.
- [17] G.R. Bamwenda, A. Obuchi, A. Ogata, K. Mizuno, Chem. Lett., (1994) 2109.
- [18] G.R. Bamwenda, A. Obuchi, A. Ogata, J. Oi, K. Mizuno, Appl. Catal. B Environ. 6 (1995) 311.
- [19] B. Bolin, B.A. Doos, J. Jager, R.A. Warrick, (Eds.), The Greenhouse Effect, Climate Change, and Ecosystems, John Wiley, NY, 1986.
- [20] National Research Council, Causes and Effects of Stratospheric Ozone Reduction: An update, National Academy Press, Washington, DC, 1982.
- [21] J. Oi, A. Obuchi, A. Ogata, H. Yagita, G.R. Bamwenda, K. Mizuno, Chem. Lett. (1995) 453.
- [22] J. Oi, A. Obuchi, A. Ogata, H. Yagita, G.R. Barnwenda, K. Mizuno, Appl. Catal. B 12 (1997) 277-286.